p-group, metabelian, nilpotent (class 4), monomial
Aliases: C24.2C8, (C2×C8).15D4, C23.C8⋊4C2, (C22×C4).2C8, C23.15(C2×C8), (C23×C4).12C4, C4.37(C23⋊C4), C2.10(C23⋊C8), (C2×M4(2)).6C4, (C2×C4).28M4(2), C4.13(C4.D4), C22.15(C22⋊C8), C24.4C4.10C2, (C2×M4(2)).143C22, (C22×C4).58(C2×C4), (C2×C4).342(C22⋊C4), SmallGroup(128,52)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.C8
G = < a,b,c,d,e | a2=b2=c2=d2=1, e8=d, ab=ba, ac=ca, ad=da, eae-1=abcd, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 160 in 64 conjugacy classes, 20 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C23, C16, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, C22⋊C8, M5(2), C2×M4(2), C23×C4, C23.C8, C24.4C4, C24.C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.D4, C23⋊C8, C24.C8
Character table of C24.C8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | -i | i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | i | -i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | i | -i | ζ85 | ζ8 | ζ87 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | ζ87 | ζ83 | ζ85 | ζ85 | ζ8 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | ζ83 | ζ87 | ζ8 | ζ8 | ζ85 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | ζ8 | ζ85 | ζ83 | ζ83 | ζ87 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ13 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | i | -i | ζ8 | ζ85 | ζ83 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ14 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | -i | i | ζ83 | ζ87 | ζ8 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ15 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | -i | i | ζ87 | ζ83 | ζ85 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | ζ85 | ζ8 | ζ87 | ζ87 | ζ83 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ23 | 4 | -4 | 0 | -2 | 2 | 0 | 4i | -4i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | -2 | 2 | 0 | -4i | 4i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 2 | -2 | 0 | -4i | 4i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 2 | -2 | 0 | 4i | -4i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 9)(3 11)(4 12)(5 13)(7 15)(8 16)
(2 10)(3 11)(6 14)(7 15)
(2 10)(4 12)(6 14)(8 16)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,9)(3,11)(4,12)(5,13)(7,15)(8,16), (2,10)(3,11)(6,14)(7,15), (2,10)(4,12)(6,14)(8,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)>;
G:=Group( (1,9)(3,11)(4,12)(5,13)(7,15)(8,16), (2,10)(3,11)(6,14)(7,15), (2,10)(4,12)(6,14)(8,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,9),(3,11),(4,12),(5,13),(7,15),(8,16)], [(2,10),(3,11),(6,14),(7,15)], [(2,10),(4,12),(6,14),(8,16)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,306);
Matrix representation of C24.C8 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,1,3,0,0,0] >;
C24.C8 in GAP, Magma, Sage, TeX
C_2^4.C_8
% in TeX
G:=Group("C2^4.C8");
// GroupNames label
G:=SmallGroup(128,52);
// by ID
G=gap.SmallGroup(128,52);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,346,521,136,2804,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=1,e^8=d,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export